On the distribution of the Rudin-Shapiro function for finite fields

نویسندگان

چکیده

Let $q=p^r$ be the power of a prime $p$ and $(\beta_1,\ldots ,\beta_r)$ an ordered basis $\mathbb{F}_q$ over $\mathbb{F}_p$. For $$ \xi=\sum\limits_{j=1}^r x_j\beta_j\in \mathbb{F}_q \quad \mbox{with digits }x_j\in\mathbb{F}_p, we define Rudin-Shapiro function $R$ on by R(\xi)=\sum\limits_{i=1}^{r-1} x_ix_{i+1}, \xi\in \mathbb{F}_q. non-constant polynomial $f(X)\in \mathbb{F}_q[X]$ $c\in \mathbb{F}_p$ study number solutions $\xi\in \mathbb{F}_q$ $R(f(\xi))=c$. If degree $d$ $f(X)$ is fixed, $r\ge 6$ $p\rightarrow \infty$, asymptotically $p^{r-1}$ for any $c$. The proof based Hooley-Katz Theorem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

“the effect of risk aversion on the demand for life insurance: the case of iranian life insurance market”

abstract: about 60% of total premium of insurance industry is pertained?to life policies in the world; while the life insurance total premium in iran is less than 6% of total premium in insurance industry in 2008 (sigma, no 3/2009). among the reasons that discourage the life insurance industry is the problem of adverse selection. adverse selection theory describes a situation where the inf...

15 صفحه اول

Generalised Rudin-Shapiro Constructions

A Golay Complementary Sequence (CS) has Peak-to-Average-Power-Ratio (PAPR) ≤ 2.0 for its one-dimensional continuous Discrete Fourier Transform (DFT) spectrum. Davis and Jedwab showed that all known length 2m CS, (GDJ CS), originate from certain quadratic cosets of Reed-Muller (1,m). These can be generated using the Rudin-Shapiro construction. This paper shows that GDJ CS have PAPR ≤ 2.0 under a...

متن کامل

Moments of the Rudin-Shapiro Polynomials

We develop a new approach of the Rudin-Shapiro polynomials. This enables us to compute their moments of even order q for q 32, and to check a conjecture on the asymptotic behavior of these moments for q even and q 52.

متن کامل

On Sums of Rudin-shapiro Coefficients Ii

Let {a(n)} be the Rudin-Shapiro sequence, and let s(n) = Σ£=o () and t(n) = I"k=0(-\) a(k). In this paper we show that the sequences {s{n)/ Jn) and {t{n)/ Jn) do not have cumulative distribution functions, but do have logarithmic distribution functions (given by a specific Lebesgue integral) at each point of the respective intervals [γ/3/5, yfβ] and [0, V^] The functions a(x) and s(x) sore also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15668